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Phonetic analysis is labor intensive, limiting the amount of data that can be considered. Recently, 
automated techniques (e.g., forced alignment based on Automatic Speech Recognition - ASR) have 
emerged allowing for much larger-scale analyses. For adult speech, forced alignment can be accurate 
even when the phonetic transcription is automatically generated, allowing for large-scale phonetic studies. 
However, such analyses remain difficult for children’s speech, where ASR methods perform more poorly. 
The present study used a trainable forced aligner that performs well on adult speech to examine the effect 
of four factors on alignment accuracy of child speech: (1) Corpus - elicited speech (multiple children) 
versus spontaneous speech (single child); (2) Pronunciation dictionary – standard adult versus 
customized; (3) Training data – adult lab speech, corpus-specific child speech, all child speech, or a 
combination of child and adult speech; (4) Segment type – voiceless stops, voiceless sibilants, and 
vowels. Automatic and manual segmentations were compared. Greater accuracy was observed with (1) 
elicited speech, (2) customized pronunciations, (3) training on child speech, and (4) stops. These factors 
increase the utility of analyzing children’s speech production using forced alignment, potentially allowing 
researchers to ask questions that otherwise would require weeks or months of manual-segmentation.  



 
1. INTRODUCTION 

Acoustic analysis of speech data has traditionally required labour intensive hand annotation. 
Recently, automatic speech recognition (ASR) techniques and in particular forced alignment have been 
used to automate some of this process (Gorman et al., 2011; Milne, 2014; Renwick et al., 2013; Schiel, 
2004; Yuan & Liberman, 2008; 2011). Forced alignment takes as input an orthographic transcription of 
the speech signal, the speech signal itself, a pronunciation dictionary, and acoustic models trained to 
recognize the phones of the pronunciation dictionary and, as output, maps the acoustic signal onto the 
phones, producing an automatic segmentation. It has been successful for automating acoustic analysis of 
adult productions (e.g., sibilant spectral centre of gravity, Clayards & Doty, 2011; word-final consonant-
cluster variation, Milne, 2014). This technique therefore allows for much larger scale and faster analysis 
of phonetic data than has been traditionally possible, accelerating the progress of scientific research. 
 
Extending these techniques to other populations such as children would also be of benefit. However, ASR 
technology is known to perform more poorly with child than adult speech (see Benzeghiba et al., 2007 for 
review) with error rate generally inversely correlated with age. Some of the problems that ASR systems 
face is that children’s speech is more variable, slower and systematically different in spectral dimensions 
than adult speech (Lee et al., 1999). In fact, human listeners also have more difficulty in recognizing 
children’s speech, especially young children (D’Arcy & Russell, 2005). The differences between adult 
and child speech makes recognition of children’s speech using acoustic models trained on adult speech 
problematic (Wilpon & Jacobsen, 1996). Training with child speech improves performance (Wilpon & 
Jacobsen, 1996), as does warping the speech signal using vocal tract normalization to more closely match 
adult acoustics (Gerosa et al., 2007; Potamianos et al., 1997) but this later technique may not be as 
successful as training with child data (Elenius & Blomberg, 2005). Another source of difficulty for 
automatic systems is that children do not always pronounce words with the same phones as would be 
found in an adult pronunciation dictionary (Benzeghiba et al., 2007).  
 
In full automatic speech recognition, the system must determine what the words were as well as where the 
segments are. In forced alignment, however, the transcription is already available making the task more 
constrained. Thus forced alignment is a potentially viable tool for analyzing children’s speech. For 
example, Lee et al. (1999) used it to examine acoustic properties of speech of 5- to 11-year-olds.  
However relatively little work has examined factors affecting the accuracy of forced alignment for 
children's speech. Here we examine the viability of using forced alignment for child data by examining 
the effect of four factors on alignment performance: corpus; standard vs. phonetic-transcription-based 
pronunciation dictionary; training set; and type of segment to be aligned.  

 
2.  METHOD 
2.1 Data 

We analyzed two speech corpora with audio files from the Child Language Data Exchange 
System (CHILDES) (MacWhinney, 2000). The Julia corpus included approximately two hours of speech 
from one female Canadian-English speaking child. Data were collected longitudinally from ages 1;5 to 
3;6 in a naturalistic setting (Goad, 2010). The Paidologos corpus included approximately five hours of 
speech from 81 children (40 females) from Columbus, OH, ages 2;0 - 5;11 (Edwards & Beckman, 2008). 
Speech consisted of single word productions elicited during a picture-prompted word repetition task. Both 
corpora included orthographic and partial or full phonetic transcriptions. The speech audio files were 
segmented at the utterance level to prepare for alignment. 
 
2.2 Manual Segmentation 
Manual segmentations were collected for both corpora for comparison to the automatic segmentations. 
For Julia, manual segmentation of voiceless stops, voiceless sibilants, and vowels was completed by 
research assistants using Praat (Boersma & Weenink, 2011). Phoneme boundaries that were too difficult 



to determine due to background noise or ambiguity in the signal (for example two stops with no release 
between them, making segmentation of individual stops impossible) were discarded. For Paidologos, 
manual segmentations of word-initial consonants and the following vowels were provided with the 
corpus.  
 
2.3 Forced alignment 

Automatic segmentation was then performed for all data using the Prosodylab-Aligner (Gorman 
et al., 2011), which uses the Hidden Markov Model Toolkit (HTK) to align text to audio. Forced-
alignment was manipulated in eight conditions by transcription type and training data for Julia, and in 
four conditions by training data for Paidologos.  
 
2.4 Pronunciation dictionaries 

Forced alignment requires a phonetic transcription of the audio speech data to-be-aligned. We 
included two transcription conditions. A standard North American English transcription, the CMU 
Pronunciation Dictionary, was used for both corpora. The CMU Pronunciation Dictionary is a machine-
readable pronunciation dictionary for North American English that provides over 134,000 words and their 
phonetic transcription in ARPAbet. Julia was also aligned using a customized speaker-specific 
pronunciation dictionary developed from the phonetic transcription of her utterances. Each utterance was 
given a unique entry in the pronunciation dictionary (i.e., no homonyms). The supplied narrow phonetic 
transcription was collapsed into broader ARPAbet characters to provide more exemplars for each 
ARPAbet category. 
 
2.5 Training acoustic models 

The default acoustic models for the Prosodylab-Aligner are monophone Gaussian mixtures 
consisting of 39 Mel frequency cepstral coefficients that were pre-trained on approximately ten hours of 
North American English adult laboratory speech (Gorman et al., 2011). One advantage of this aligner is 
that it also supports training of new acoustic models based on arbitrary datasets. Training of new acoustic 
models involves three rounds of model estimation consisting of four iterations each. In the first round, the 
models are initialized with flat-start monophones. Next, a tied-state “small pause” model is inserted 
before the second round of estimation. The data are aligned using the most likely pronunciation of all 
homonyms in the provided pronunciation dictionary, followed by a final round of estimation. The final 
alignment represents the optimal model estimation given the training input.  

Four training conditions were included in the present study. Training set (a) included the default 
acoustic models described above. Training set (b) included acoustic models trained only on the specific 
corpus to be aligned (Julia or Paidologos). Training set (c) included all child data (approximately seven 
hours of audio) and no adult data. Training set (d) included a combination of both adult laboratory data 
(default training input) as well as the child data (approximately 6 hours of audio). 
 
2.6 Comparisons 

Manual and automatic segmentations were compared for voiceless stops, voiceless sibilants, and 
vowels by computing the percentage of auto-aligned phones that overlapped with the midpoint of the 
corresponding manually-aligned phone (%-Match).  

 
 
3. RESULTS 
3.1 Alignment parameters 

Acoustic models that produced more accurate alignments were identified by a greater %-Match 
between the automatically and manually aligned audio. Table 1,reports the %-Match for each corpus for 
each alignment parameter, which ranged from 23% to 89%. Alignment on Paidologos resulted in higher 
accuracy. For both datasets, more accurate alignments were generally obtained when training included the 



specific child to be aligned. Additionally, for Julia, alignment was more accurate with the customized 
than with the standard dictionary. Specific phone alignment accuracy varied across the two datasets. For 
Paidologos, vowels accounted for the highest percentage of matched segments, whereas voiceless 
sibilants were aligned more accurately for Julia.  

 
 

Table 1: % Match 

Dataset Transcription Training Stop Sibilant Vowel 
All 

segments 

Paidologos Standard 

A-adult 78 23 81 61 

B-specific 89 86 86 87 

C-all child 85 64 83 77 

D- child + adult 76 53 87 72 

All Training 82 57 84 74 

Julia 

Standard 

A-adult 27 28 20 25 

B-specific 45 52 27 41 

C-all child 49 61 27 46 

D- child + adult 32 32 23 29 

All Training 38 43 24 35 

Customized 

A-adult 33 36 40 36 

B-specific 65 76 63 68 

C-all child 53 80 63 65 

D- child + adult 39 41 46 42 

All Training 48 58 53 53 

All Datasets All transcriptions All Training 54 52 52 53 
 
Accuracy of the automatic left and right boundary placements for all matched segments was also 

examined. For each boundary (left and right) the absolute difference between the manual and hand 
aligned placement was calculated. Table 2 presents the cumulative distribution of all absolute boundary 
differences for matched segments. For example, 49.69% of matched automatic and manual boundary 
placements differed by less than 25 ms for Paidologos, compared to 45.79% for Julia.  
 

Table 2: Cumulative % of absolute boundary differences between automatic and manual alignments 
(matched segments) 

Absolute boundary 
difference (ms) 

Cumulative % 
Paidologos Julia 

5 2.25 4.03 
10 11.05 15.02 
25 49.69 45.79 
50 87.80 77.28 

100 96.61 93.63 



3.2 Age of speaker 
 Alignment accuracy improved with the speech of older children for both datasets (Figure 1). For 
Paidologos, the speech of 4- and 5-year-olds was aligned with greater accuracy than that of 2- and 3-year-
olds. In the Julia dataset, which was collected longitudinally, speech collected later in time was aligned 
with greater accuracy. 
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Figure 1: %-Match by speaker age, alignment parameters. Open shapes represent the customized 
pronunciation dictionary. 
 
4. DISCUSSION 
 We found differences in the % Match across corpora. This may have been due to the type of 
speech - the elicited single-word productions (Paidologos) were aligned with greater accuracy than the 
spontaneous speech in a conversational setting (Julia) - however it could also have been due to other 
differences between the corpora such as recording quality. We found that training acoustic models on 
child speech yielded better alignment than using models that were trained on only adult data – consistent 
with the literature on factors that improve ASR performance. In particular, the most accurate 
segmentations for each corpus used acoustic models trained exclusively on the data of the specific child 
(or for Paidologos, children) to be aligned. This is likely due to differences between the two corpora (e.g., 
style of speech and recording quality) leading to somewhat different acoustic models. In the case of 
Julia’s data, providing a customized pronunciation dictionary based on a phonetic transcription of the 
speech also improved performance. This may be especially useful for spontaneous speech where 
deviations from canonical pronunciation are more likely. We also found differences across segment types; 
the relative success of each segment type depended on the corpus (for Julia, sibilants were the most 
accurate, but for Paidologos sibilants were the least well aligned, even if we consider only alignments 
with the standard dictionary). This suggests that categories of phones may be treated differently by 
automatic methods, depending on the number of examples in the training data, the amount of segmental 
variability in the data, and/or the nature of the speech task. Finally, alignment performance increased with 
speaker age, presumably due to the decreased variability in older children’s speech. These results suggest 
that, despite limitations, the parameters identified here may improve the semi-automatic analysis of 
speech from children, contributing to our ability to conduct larger-scale analyses of child speech.  
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